skip to main content


Search for: All records

Creators/Authors contains: "Homeier, Jürgen"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We introduce the FunAndes database, a compilation of functional trait data for the Andean flora spanning six countries. FunAndes contains data on 24 traits across 2,694 taxa, for a total of 105,466 entries. The database features plant-morphological attributes including growth form, and leaf, stem, and wood traits measured at the species or individual level, together with geographic metadata (i.e., coordinates and elevation). FunAndes follows the field names, trait descriptions and units of measurement of the TRY database. It is currently available in open access in the FIGSHARE data repository, and will be part of TRY’s next release. Open access trait data from Andean plants will contribute to ecological research in the region, the most species rich terrestrial biodiversity hotspot. 
    more » « less
  2. null (Ed.)
    Abstract It is largely unknown how South America’s Andean forests affect the global carbon cycle, and thus regulate climate change. Here, we measure aboveground carbon dynamics over the past two decades in 119 monitoring plots spanning a range of >3000 m elevation across the subtropical and tropical Andes. Our results show that Andean forests act as strong sinks for aboveground carbon (0.67 ± 0.08 Mg C ha −1 y −1 ) and have a high potential to serve as future carbon refuges. Aboveground carbon dynamics of Andean forests are driven by abiotic and biotic factors, such as climate and size-dependent mortality of trees. The increasing aboveground carbon stocks offset the estimated C emissions due to deforestation between 2003 and 2014, resulting in a net total uptake of 0.027 Pg C y −1 . Reducing deforestation will increase Andean aboveground carbon stocks, facilitate upward species migrations, and allow for recovery of biomass losses due to climate change. 
    more » « less
  3. Abstract

    The “hierarchy of factors” hypothesis states that decomposition rates are controlled primarily by climatic, followed by biological and soil variables. Tropical montane forests (TMF) are globally important ecosystems, yet there have been limited efforts to provide a biome‐scale characterization of litter decomposition. We designed a common litter decomposition experiment replicated in 23 tropical montane sites across the Americas, Asia, and Africa and combined these results with a previous study of 23 sites in tropical lowland forests (TLF). Specifically, we investigated (1) spatial heterogeneity in decomposition, (2) the relative importance of biological factors that affect leaf and wood decomposition in TMF, and (3) the role of climate in determining leaf litter decomposition rates within and across the TMF and TLF biomes. Litterbags of two mesh sizes containingLaurus nobilisleaves or birchwood popsicle sticks were spatially dispersed and incubated in TMF sites, for 3 and 7 months on the soil surface and at 10–15 cm depth. The within‐site replication demonstrated spatial variability in mass loss. Within TMF, litter type was the predominant biological factor influencing decomposition (leaves > wood), with mesh and burial effects playing a minor role. When comparing across TMF and TLF, climate was the predominant control over decomposition, but the Yasso07 global model (based on mean annual temperature and precipitation) only modestly predicted decomposition rate. Differences in controlling factors between biomes suggest that TMF, with their high rates of carbon storage, must be explicitly considered when developing theory and models to elucidate carbon cycling rates in the tropics.

    Abstract in Spanish is available with online material.

     
    more » « less